Sound Pressure Level Test Report
Report No. : KH2_13_0068
Date : 2013-4-16

Category: Desktop (All In One)
Module Name: PPC-6150

Customer: Advantech Technology (China) Co., Ltd.
Customer Address: NO. 600, HANPU ROAD, JIANGSU, KUNSHAN, CHINA

Roger Wang
Report Signer
Roger_Wang@pendec.com

Vivi Wei
Quality Manager
Vivi_Wei@pendec.com

Vivi Wei
Testing Engineer
Vivi_Wei@pendec.com
Table of Content

1. Introduction
 Page 2

2. General Information
 Page 2

3. Testing Configuration
 Page 2

4. Test Equipment
 Page 3

5. Reference
 Page 4

6. Notification
 Page 4

7. Test Setup
 Page 5-6

8. Setup Photo
 Page 7

9. Testing Result
 Page 8-9

10. Spectrum
 Page 10-11
1. Introduction

The sample(s) with trade name "AIO", designated as "PPC-6150", was/were received at Pendec Electronics (Kunshan) Co., Ltd. on 2013-4-16 and tested on 2013-4-16. Determination of the sound pressure level test was conducted in full conformance with ISO7779: 2010 (E) (Acoustics-Measurement of airborne noise emitted by information technology and telecommunications equipment) and ISO 11201:2010 (E) (Acoustics - Noise emitted by machinery and equipment - Determination of emission sound pressure levels at a work station and at other specified positions in an essentially free field over a reflecting plane with negligible environmental corrections.)

Pendec Laboratory is a TAF ISO/IEC 17025 accredited laboratory for acoustic tests. The test was conducted by Vivi Wei. Data analysis and report generation were conducted by Vivi Wei.

2. General Information

Report Version: rev 01
Applicant: Advantech
Brand name: Advantech
Manufacturer / OEM: Advantech
Product description: Desktop (All In One)
Project name: PPC-6150
Quantity: 1 unit(s)
Test procedure: ISO7779: 2010 (E)

3. Testing Configuration

Environment:
- Temperature: 22.4 °C
- Relative Humidity: 61 %

Testing Chamber: Hemi-Anechoic Chamber #2, Pendec Electronics (Kunshan) Co., Ltd.

Testing Method:
The sound pressure level is performed in accordance with the procedures specified in clause 8 of ISO 7779: "Acoustics - Measurement of airborne noise emitted by information technology and telecommunication equipment, 2010 (E)"
The sound pressure level is displayed in decibels (reference:20μPa)

Frequency Bandwidth: The testing frequency bandwidth is 100Hz~20KHz in 1/3 Octave bands
Frequency Weighting: The testing frequency weighting is A-Weighted
Measurement Duration: The measurement duration is 30 seconds
Sample Installation: The testing sample is installed on the standard testing table located in the geometric center of the hemi-anechoic chamber

Uncertainty: Uncertainty = 0.50 dB(A); The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.
4. Test Equipment

<table>
<thead>
<tr>
<th>Item</th>
<th>Equipment</th>
<th>Brand</th>
<th>Type</th>
<th>Serial Number</th>
<th>Last Calibration date</th>
<th>Next Calibration date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Microphone</td>
<td>G.R.A.S.</td>
<td>Type 40AE</td>
<td>71445</td>
<td>2012-12-17</td>
<td>2013-12-16</td>
</tr>
<tr>
<td>2</td>
<td>Microphone</td>
<td>G.R.A.S.</td>
<td>Type 40AE</td>
<td>82192</td>
<td>2012-12-17</td>
<td>2013-12-16</td>
</tr>
<tr>
<td>3</td>
<td>Microphone</td>
<td>G.R.A.S.</td>
<td>Type 40AE</td>
<td>75080</td>
<td>2012-8-27</td>
<td>2013-8-26</td>
</tr>
<tr>
<td>4</td>
<td>Microphone</td>
<td>G.R.A.S.</td>
<td>Type 40AE</td>
<td>75082</td>
<td>2012-12-17</td>
<td>2013-12-16</td>
</tr>
<tr>
<td>5</td>
<td>Microphone</td>
<td>G.R.A.S.</td>
<td>Type 40AE</td>
<td>75083</td>
<td>2012-12-17</td>
<td>2013-12-16</td>
</tr>
<tr>
<td>6</td>
<td>Preamplifier</td>
<td>G.R.A.S.</td>
<td>Type 26CA</td>
<td>74207</td>
<td>2012-12-17</td>
<td>2013-12-16</td>
</tr>
<tr>
<td>7</td>
<td>Preamplifier</td>
<td>G.R.A.S.</td>
<td>Type 26CA</td>
<td>83962</td>
<td>2012-12-17</td>
<td>2013-12-16</td>
</tr>
<tr>
<td>8</td>
<td>Preamplifier</td>
<td>G.R.A.S.</td>
<td>Type 26CA</td>
<td>74209</td>
<td>2012-8-27</td>
<td>2013-8-26</td>
</tr>
<tr>
<td>9</td>
<td>Preamplifier</td>
<td>G.R.A.S.</td>
<td>Type 26CA</td>
<td>74210</td>
<td>2012-12-17</td>
<td>2013-12-16</td>
</tr>
<tr>
<td>10</td>
<td>Preamplifier</td>
<td>G.R.A.S.</td>
<td>Type 26CA</td>
<td>74211</td>
<td>2012-12-17</td>
<td>2013-12-16</td>
</tr>
<tr>
<td>11</td>
<td>Analyzer</td>
<td>Head Acoustics</td>
<td>SQLabII</td>
<td>024288-092002</td>
<td>2012-7-4</td>
<td>2013-7-3</td>
</tr>
</tbody>
</table>
5. Reference

1. ISO7779: 2010 (E) - Acoustics - Measurement of airborne noise emitted by information technology and telecommunications equipment
2. ISO 11201:2010 (E) - Acoustics - Noise emitted by machinery and equipment - Determination of emission sound pressure levels at a work station and at other specified positions in an essentially free field over a reflecting plane with negligible environmental corrections.

6. Notification

1. The test results are only valid for the specimen tested.
2. This test report should be used in complete form and any statement or result is partial extraction of this report is not valid.
3. The TAF and ilac logo only assures the quality system of Pendec Electronics (Kunshan) Co., Ltd. is accordance with the requirment of ISO/IEC 17025.
4. All testing data are not included in the accreditation scope of TAF. TAF does not assure whether the reporting data are correct or not. Clients shall not claim product certification, approval, or endorsement by TAF or any agency.
7.1 Test setup for Operator Position

Fig. 1 Location of EUT and microphone position (Top view)

Fig. 2 Location of EUT and microphone position (Side view)
7.2 Test Setup for Bystander Position

Fig. 3 Location of EUT and microphone position (Top view)

Fig. 4 Location of EUT and microphone position (Side view)
8. Setup Photo

Fig. 5 Setup photo (Overall view)

Fig. 6 Setup photo (Close view)
9.1 Test Result for Operator Position (PPC-6150)

<table>
<thead>
<tr>
<th>No.</th>
<th>Mode</th>
<th>Sound Pressure Level (dB(A))</th>
<th>Back Ground Noise Correction (dB(A))</th>
<th>Sound Pressure Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mic. 06(Measured)</td>
<td>K_{1A}</td>
<td>Mic. 06 (Corrected)</td>
</tr>
<tr>
<td>0</td>
<td>Background Noise</td>
<td>15.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>PPC-6150_Idle</td>
<td>30.8</td>
<td>0.00</td>
<td>30.8</td>
</tr>
<tr>
<td>2</td>
<td>PPC-6150_Burn in</td>
<td>33.2</td>
<td>0.00</td>
<td>33.2</td>
</tr>
</tbody>
</table>

Note: If the difference between measured sound pressure levels and background noise < 6 dB, the corrections for background noise to be applied is 1.3 dB for accuracy grade 2 (according to Sec.5.4.2 of ISO 11201:2010(E)). For some cases, the corrected sound pressure level might be lower than the background noise. It can be assumed that the source emits little or no measurable noise, and that the data reported represent upper bounds to the emission sound pressure level.
9.2 Test Result for Bystander Position (PPC-6150)

<table>
<thead>
<tr>
<th>No.</th>
<th>Mode</th>
<th>Sound Pressure Level, Measured (dB(A))</th>
<th>Background Noise Correction (dB(A))</th>
<th>Sound Pressure Level, Corrected (dB(A))</th>
<th>SPL, Corrected (dB(A))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mic.02 Front</td>
<td>Mic.03 Right</td>
<td>Mic.04 Rear</td>
<td>Mic.05 Left</td>
</tr>
<tr>
<td>0</td>
<td>Background noise</td>
<td>15.3</td>
<td>15.1</td>
<td>16.1</td>
<td>15.3</td>
</tr>
<tr>
<td>1</td>
<td>PPC-6150_Idle</td>
<td>30.1</td>
<td>36.2</td>
<td>30.2</td>
<td>35.9</td>
</tr>
<tr>
<td>2</td>
<td>PPC-6150_Burn in</td>
<td>33.2</td>
<td>38.6</td>
<td>32.9</td>
<td>38.3</td>
</tr>
</tbody>
</table>

Note: If the difference between measured sound pressure levels and background noise < 6 dB, the corrections for background noise to be applied is 1.3 dB for accuracy grade 2 (according to Sec.5.4.2 of ISO 11201:2010(E)). For some cases, the corrected sound pressure level might be lower than the background noise. It can be assumed that the source emits little or no measurable noise, and that the data reported represent upper bounds to the emission sound pressure level.
10. Spectrum (1)

Fig. 7 Background noise

Fig. 8 PPC-6150_Idle
10. Spectrum (2)

Fig. 9 PPC-6150_Burn in