
User Manual
Inspector Express

Scripting User Manual

Copyright
The documentation and the software included with this product are copyrighted 2006
by Advantech Co., Ltd. All rights are reserved. Advantech Co., Ltd. reserves the right
to make improvements in the products described in this manual at any time without
notice. No part of this manual may be reproduced, copied, translated or transmitted
in any form or by any means without the prior written permission of Advantech Co.,
Ltd. Information provided in this manual is intended to be accurate and reliable. How-
ever, Advantech Co., Ltd. assumes no responsibility for its use, nor for any infringe-
ments of the rights of third parties, which may result from its use.

Acknowledgements
Intel and Pentium are trademarks of Intel Corporation.

Microsoft Windows and MS-DOS are registered trademarks of Microsoft Corp.

All other product names or trademarks are properties of their respective owners.

Product Warranty (2 years)
Advantech warrants to you, the original purchaser, that each of its products will be
free from defects in materials and workmanship for two years from the date of pur-
chase.

This warranty does not apply to any products which have been repaired or altered by
persons other than repair personnel authorized by Advantech, or which have been
subject to misuse, abuse, accident or improper installation. Advantech assumes no
liability under the terms of this warranty as a consequence of such events.

Because of Advantech’s high quality-control standards and rigorous testing, most of
our customers never need to use our repair service. If an Advantech product is defec-
tive, it will be repaired or replaced at no charge during the warranty period. For out-
of-warranty repairs, you will be billed according to the cost of replacement materials,
service time and freight. Please consult your dealer for more details.

If you think you have a defective product, follow these steps:

1. Collect all the information about the problem encountered. (For example, CPU
speed, Advantech products used, other hardware and software used, etc.) Note
anything abnormal and list any onscreen messages you get when the problem
occurs.

2. Call your dealer and describe the problem. Please have your manual, product,
and any helpful information readily available.

3. If your product is diagnosed as defective, obtain an RMA (return merchandize
authorization) number from your dealer. This allows us to process your return
more quickly.

4. Carefully pack the defective product, a fully-completed Repair and Replacement
Order Card and a photocopy proof of purchase date (such as your sales receipt)
in a shippable container. A product returned without proof of the purchase date
is not eligible for warranty service.

5. Write the RMA number visibly on the outside of the package and ship it prepaid
to your dealer.

Part No. 2003102410 Edition 1

Printed in Taiwan March 2013
Inspector Scripting User Manual ii

Declaration of Conformity

CE

This product has passed the CE test for environmental specifications when shielded
cables are used for external wiring. We recommend the use of shielded cables. This
kind of cable is available from Advantech. Please contact your local supplier for
ordering information.

CE

This product has passed the CE test for environmental specifications. Test conditions
for passing included the equipment being operated within an industrial enclosure. In
order to protect the product from being damaged by ESD (Electrostatic Discharge)
and EMI leakage, we strongly recommend the use of CE-compliant industrial enclo-
sure products.

FCC Class A

Note: This equipment has been tested and found to comply with the limits for a Class
A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to
provide reasonable protection against harmful interference when the equipment is
operated in a commercial environment. This equipment generates, uses, and can
radiate radio frequency energy and, if not installed and used in accordance with the
instruction manual, may cause harmful interference to radio communications. Opera-
tion of this equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own expense.

FCC Class B

Note: This equipment has been tested and found to comply with the limits for a Class
B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to
provide reasonable protection against harmful interference in a residential installa-
tion. This equipment generates, uses and can radiate radio frequency energy and, if
not installed and used in accordance with the instructions, may cause harmful inter-
ference to radio communications. However, there is no guarantee that interference
will not occur in a particular installation. If this equipment does cause harmful interfer-
ence to radio or television reception, which can be determined by turning the equip-
ment off and on, the user is encouraged to try to correct the interference by one or
more of the following measures:

 Reorient or relocate the receiving antenna.
 Increase the separation between the equipment and receiver.
 Connect the equipment into an outlet on a circuit different from that to which the

receiver is connected.
 Consult the dealer or an experienced radio/TV technician for help.

FM

This equipment has passed the FM certification. According to the National Fire Pro-
tection Association, work sites are classified into different classes, divisions and
groups, based on hazard considerations. This equipment is compliant with the speci-
fications of Class I, Division 2, Groups A, B, C and D indoor hazards.
iii Inspector Scripting User Manual

Technical Support and Assistance
1. Visit the Advantech web site at http://support.advantech.com.tw/ where you can

find the latest information about the product.
2. Contact your distributor, sales representative, or Advantech's customer service

center for technical support if you need additional assistance. Please have the
following information ready before you call:
– Product name and serial number
– Description of your peripheral attachments
– Description of your software (operating system, version, application software,

etc.)
– A complete description of the problem
– The exact wording of any error messages

Warnings, Cautions and Notes

Document Feedback
To assist us in making improvements to this manual, we would welcome comments
and constructive criticism. Please send all such - in writing to:
http://support.advantech.com.tw/

Packing List
Before setting up the system, check that the items listed below are included and in
good condition. If any item does not accord with the table, please contact your dealer
immediately.

 Item XXXXXXXX
 Box XXXXXXXXX

Warning! Warnings indicate conditions, which if not observed, can cause personal
injury!

Caution! Cautions are included to help you avoid damaging hardware or losing
data. e.g.

There is a danger of a new battery exploding if it is incorrectly installed.
Do not attempt to recharge, force open, or heat the battery. Replace the
battery only with the same or equivalent type recommended by the man-
ufacturer. Discard used batteries according to the manufacturer's
instructions.

Note! Notes provide optional additional information.
Inspector Scripting User Manual iv

Safety Instructions
1. Read these safety instructions carefully.
2. Keep this User Manual for later reference.
3. Disconnect this equipment from any AC outlet before cleaning. Use a damp

cloth. Do not use liquid or spray detergents for cleaning.
4. For plug-in equipment, the power outlet socket must be located near the equip-

ment and must be easily accessible.
5. Keep this equipment away from humidity.
6. Put this equipment on a reliable surface during installation. Dropping it or letting

it fall may cause damage.
7. The openings on the enclosure are for air convection. Protect the equipment

from overheating. DO NOT COVER THE OPENINGS.
8. Make sure the voltage of the power source is correct before connecting the

equipment to the power outlet.
9. Position the power cord so that people cannot step on it. Do not place anything

over the power cord.
10. All cautions and warnings on the equipment should be noted.
11. If the equipment is not used for a long time, disconnect it from the power source

to avoid damage by transient overvoltage.
12. Never pour any liquid into an opening. This may cause fire or electrical shock.
13. Never open the equipment. For safety reasons, the equipment should be

opened only by qualified service personnel.
14. If one of the following situations arises, get the equipment checked by service

personnel:
15. The power cord or plug is damaged.
16. Liquid has penetrated into the equipment.
17. The equipment has been exposed to moisture.
18. The equipment does not work well, or you cannot get it to work according to the

user's manual.
19. The equipment has been dropped and damaged.
20. The equipment has obvious signs of breakage.
21. DO NOT LEAVE THIS EQUIPMENT IN AN ENVIRONMENT WHERE THE

STORAGE TEMPERATURE MAY GO BELOW -20° C (-4° F) OR ABOVE 60° C
(140° F). THIS COULD DAMAGE THE EQUIPMENT. THE EQUIPMENT
SHOULD BE IN A CONTROLLED ENVIRONMENT.

22. CAUTION: DANGER OF EXPLOSION IF BATTERY IS INCORRECTLY
REPLACED. REPLACE ONLY WITH THE SAME OR EQUIVALENT TYPE
RECOMMENDED BY THE MANUFACTURER, DISCARD USED BATTERIES
ACCORDING TO THE MANUFACTURER'S INSTRUCTIONS.

23. The sound pressure level at the operator's position according to IEC 704-1:1982
is no more than 70 dB (A).

DISCLAIMER: This set of instructions is given according to IEC 704-1. Advantech
disclaims all responsibility for the accuracy of any statements contained herein.
v Inspector Scripting User Manual

Safety Precaution - Static Electricity
Follow these simple precautions to protect yourself from harm and the products from
damage.

 To avoid electrical shock, always disconnect the power from your PC chassis
before you work on it. Don't touch any components on the CPU card or other
cards while the PC is on.

 Disconnect power before making any configuration changes. The sudden rush
of power as you connect a jumper or install a card may damage sensitive elec-
tronic components.
Inspector Scripting User Manual vi

Contents

Chapter 1 The Script Panel1
1.1 Accessing the Script Tool.. 2
1.2 The variable Tree List ... 3
1.3 The Function List... 3
1.4 The Basic Script Editor.. 4
1.5 The Full Script Editor... 5
1.6 Scripting Basics... 6

Chapter 2 About Variables7
2.1 Special Global Variables ... 8
2.2 Persistent Variables .. 9
2.3 Variable Basics ... 9
2.4 Variable Listing.. 10

Chapter 3 About Functions11
3.1 Pre-Ordered Functions.. 12
3.2 Event Functions .. 13
3.3 Periodic Function .. 13
3.4 User Function.. 14
3.5 Delayed Event Function .. 14
3.6 PLC Change of State Function ... 14
3.7 The Input State Change Function ... 14
3.8 The COM TCP/IP Command Handler Function 15
3.9 Function Timing... 16

3.10 Function Listing ... 17
3.10.1 Math Functions ... 17
3.10.2 String and Character Functions .. 17
3.10.3 Tool Statistics and Attribute Functions.. 18
3.10.4 Digital IO/Acquisition Control Function 19
3.10.5 Logging Functions... 20
3.10.6 TCP IO Function ... 21
3.10.7 Bit Functions ... 21
3.10.8 System / Misc. Functions .. 22

Chapter 4 The String Editor25
4.1 String Formatting Reference ... 26

Appendix A Scripting Examples29
A.1 Manipulating Outposts .. 30
A.2 Solution Switching... 31
A.3 Trigger Control .. 33
A.4 ReTrigger Example ... 34
A.5 Customizing Text is the Monitor Pane .. 36
A.6 Sensor Control .. 38
A.7 Image Logging .. 39
A.8 Result Logging .. 40
A.9 Using Start and Stop Functions .. 42
vii Inspector Scripting User Manual

A.10 Communication Using Strings... 43
A.11 Using Arrays ... 45
A.12 Manipulating Bits of Data .. 48
Inspector Scripting User Manual viii

Chapter 1

1 The Script Panel

1.1 Accessing the Script Tool
The Script Tool is mostly used for control and communication, which is why it
is accessed through the control panel after the tools have been defined. Sim-
ply follow the clicks as shown below:


Inside the script panel there are 3 sections. The control panel on the left side contains
a variable tree list, a function list and a basic script editor. On the right side are the
image window and the function equation manager.
Inspector Scripting User Manual 2

C
hapter 1

T
he S

criptP
anel
1.2 The variable Tree List

The variable tree at the top of the control panel lists all of the variables
available to the script tool, namely:
 Tool outputs from user-defined measurements (i.e. MS1.Result)
 Predefined keywords (control words such as SOLUTION)
 Discrete I/O (physical inputs and outputs available to the device)
 PLC or communication registers. (user defined connections)
 User variables

Variables can have Boolean meaning, such as TRUE/FALSE or ON/OFF, or
they can store numbers or strings of user defined information.

1.3 The Function List
The Function list is available in the middle of the control panel in the form of a
drop-down list. By default it contains predefined functions for solution initial-
ization, as well as pre and post processing. These functions are empty when
starting a new solution, meaning they do nothing until you add something to
them.

To edit a function, select it in the function drop down list and add instructions
using the basic or full script editors available.

To add functions, click the “New” button and follow instructions in the popup
menu. Added functions will appear in the drop down list above. Similarly,
remove unwanted functions by selecting them in the drop down list and click-
ing the “Del” button.

The “New Function” interface shown above will be described in a later section.
3 Inspector Scripting User Manual

1.4 The Basic Script Editor
Users new to programming can start with the simple script editor provided at
the bottom of the control panel. It provides the basic means to add instructions
to a function. Simply select the function to edit from the function drop down
list, enter the condition, variable name and value, then click “Add Equation”.
The new instruction will be added to the selected function and displayed in the
Equation Manager on the right side of the panel (shown at the bottom of this
page).

The above example shows how to add an instruction to the “Post Image
Process” function. This instruction will send the cumulative pass count to a
predefined TCP/IP connection if the current inspection result = pass.

When using the basic script editor, variables may be selected from the vari-
able tree and dragged into the active edit boxes. Clicking the “New Name”
button will add a user defined variable (i.e. User0) that is not currently defined
in the function. Clicking the “Evaluate” button will process the equation and
show you the result.
Inspector Scripting User Manual 4

C
hapter 1

T
he S

criptP
anel
1.5 The Full Script Editor
The full script editor is accessed by clicking the “Free Edit” button at the bot-
tom of the Equation Manager. When clicked, the free editor panel will pop-up
as shown at the bottom of this page.

Equations associated with a function can be exported to a user defined text
file by clicking the “Export” button. Similarly, equations stored in a local text file
can be imported into a selected function by clicking the “Import” button. This is
a convenient method of sharing scripts or script snippets (application specific
code) across solutions.

The full script editor offers much more flexibility for designing and editing
scripts. Most users quickly migrate to this method over the basic editor
described previously.

The free editor provides drop-down menus for quick access to functions,
variables, equation operators and program flow commands. A string editor is
also included to simplify the formatting of communication strings to external
devices. Clicking on a drop-down feature from the list will add it to the script.
Manually add parameters and associated control statements to each script as
required.

The Check Syntax button checks the “programmatic grammar” of the individ-
ual strings, but cannot parse the statements for runtime context errors that
may occur outside this window.
5 Inspector Scripting User Manual

1.6 Scripting Basics
1. Comment your code. This will make it much easier for you to debug should you

need to come back to the solution at a later time. You can add comment lines
using the prefix "//" (two forward slashes) for example: // Initialize the x array

2. All of your expressions, equations, and variables are saved in the Solution file,
and persist when the Solution file is reloaded.

3. Statements are formed in a plain algebraic format, for example: a = b+c
4. Functions are called simply in the form: z = aFunctionName(param1, param2)
5. Variable names have a limit of 60 characters
6. A line of script has a limit of 256 characters. Numbers of lines are only limited by

available memory.
7. Max time for the Pre-image Process function is 100ms
8. Max time for Post Image Process function is 300ms on EagleEye (1000ms on

other platforms)
9. Max time all other functions are 1000ms.
10. The time a Script takes can be reduced significantly by sending an array of data

verses multiple read/writes (time to send an array is the same as a single piece
of data). Bit functions can also be used.

11. It is good practice to always close “If” statements with “Endif”, even though this
is not required for single command statements. This makes code easier to read
and debug.

12. Once created, script variables will persist even if you delete them inside a script.
A variable can be selected and deleted from the variable tree list or by starting a
new solution.
Inspector Scripting User Manual 6

Chapter 2

2 About Variables

There are 3 classes or types of variables that can be used in a script:

1. Global device variables – variables associated with external hardware such as
I/O

2. Global control variables – variables that provide system wide status or control
3. Local user variables – variables associated with tools or functions defined by

the user

2.1 Special Global Variables

Some special variables are not visible in the variable tree or the free editor.
These variables are as follows:
 Solution - Global command variable that loads a new solution when written (i.e.

Solution = 5 would load solution05.bin)
 RelearnIndex - Specifies an external input that is sampled when a trigger

occurs to initiate a runtime tool relearn.
 ShowPreprocessed - Enables (=1) or disables (=0) display of preprocessing in

ROI at runtime
 RelearnIndex - uses one of the General Purpose Inputs to trigger retraining or

relearning specific tools (Match, Barcode, 2D-Code, Locator). RelearnIndex=1
will execute a relearn (in the next acquired image) when GPI (1) is asserted.
This statement should be added in the Solution Initialize function. To assign a
tool to relearn, create a new Relearn variable. For example, to assign Barcode1
to be retrained, Bar1.Relearn=1. The Barcode tool will be retrained (in the next
image) when the input assigned by RelearnIndex GPI(1) is asserted.

 RelearnOnZero - RelearnOnZero =1 forces relearn to occur when the defined
Relearn input (RelearnIndex) is 0, not 1. This statement should be added in the
Solution Initialize function. NOTE: GPI(0) is the EagleEye trigger input. GPI(1)
is the EagleEye IN0.

The Result variable returns the result from each defined camera, as well as
the overall inspection result. Result.0 variables return the result before an
action is decided (i.e. it is made available so that user-defined functions can
use it to define actions).

Result=1 (PASS)
Result=2 (RECYCLE)
Result=3 (FAIL)

You can override (not typical for most applications) the composite result, by
adding variables “PASS”, “RECYCLE”, “FAIL”, (must be all capitals) and set-
ting their values to 1 (for TRUE) or 0 (for FALSE).

Note! The inputs on the EagleEye read 1 when nothing is connected, or
when the input is lower than the logic threshold. You must be careful
to connect the input so that GPI(1) will only read 1 when relearn is
desired, or use the RelearnOnZero variable.

Note! In formation of (creating or composing) the final Result, FAIL
supersedes RECYCLE, and RECYCLE supersedes PASS. Put
your tests for PASS, FAIL, RECYCLE in the "Post Image
Processing" function.
Inspector Scripting User Manual 8

C
hapter 2

A
bout V

ariables
2.2 Persistent Variables
When a solution is saved, any associated variables are saved also. When a
solution is loaded, only its associated variables are loaded. This means that
variables associated with the previous solution will be deleted unless they are
also saved in the new solution. The exception to this rule is Persistent Vari-
ables. These special variables will persist even if the solution that created
them is replaced by a different solution. Persistent variables are therefore
used more for system (EagleEye) variables as opposed to solution specific
variables. Persistent variables will persist until the EagleEye camera is power
cycled. Persistent variables are defined with a Prog prefix and can also be
saved in a solution file (i.e. Prog.myvariable).

2.3 Variable Basics
1. Use square brackets for variable names, especially names with spaces in them.

Notice that variable names inserted or dragged into a field, are enclosed in
brackets.

2. All of your expressions, equations, and variables are saved in the Solution file,
and persist when the Solution file is reloaded.

3. User added variables belong to the current Solution. Loading a different Solu-
tion will cause your user variable set to be replaced with the set belonging to
that new Solution.

4. There are many pre-defined variables with special meaning for use in scripts.
You can also create your own variables. Referencing a variable automatically
creates or instantiates that variable. A separate step for creating or declaring, is
not necessary.

5. A complete listing of predefined variables follows on the next page.
9 Inspector Scripting User Manual

2.4 Variable Listing
 Result.0 - the value of Result, before it is output. This allows equations to eval-

uate the Result, before the decision is sent to the monitor, decision I/O and
other mechanisms. Result.0 returns 3 values: 1=Pass, 2=Recycle, 3=Reject.

 Result - the result of all measurements (the "composite result"). This result is
sent to the Monitor, decision I/O and other communication mechanisms (such
as PLC, Ethernet, serial port, etc.). Result returns 3 values: 1=Pass, 2=Recy-
cle, 3=Reject. Each measurement also has a Result (i.e. L1.Result).

 Global.GPI[#] - a general purpose input. The Camera treats and evaluates all
inputs as a steady state logic input. NOTE: GPI(0) is the EagleEye Trigger
input. GPI(1) is the EagleEye IN0 input. When using the PL-200, GPI(8) is the
Trigger input.

 Global.GPO[#] - a general purpose output. Normally, the outputs are held high
or low, until the next result is available. (The Pass/Recycle/Fail decision outputs
are pulsed.) You can use the pulse function or use the Delayed Event Function
to create a pulse output.

 Global.RunMode - the current run-state or running mode. 0=running,
1=stopped.

 Global.FrameCount - number of frames or images acquired since a Solution
was loaded, or since the statistics was reset ("Reset Statistics" button on the
Monitor panel).

 Global.Missed - number of missed parts or frames.
 Global.ContinuousMissed - number of parts or frames missed in a row, or one

after another.
 Global.PassCount - the value of the Pass counter, or the number of Passed

parts.
 Global.FailCount - the value of the Fail counter, or the number of Failed parts.
 Global.RecycleCount - the value of the Recycle counter, or the number of

Recycled parts.
 Global.ContinuousPassCount - the number of parts or frames passed in a

row, or one after another.
 Global.ContinuousFailCount - the number of parts failed in a row, or one after

another.
 SolutionPollRate – used with the PL-200. Polls the solution index inputs at the

specified frequency to determine if a solution switch is requested.



Inspector Scripting User Manual 10

Chapter 3

3 About Functions

Variables are manipulated using functions. Functions are made up of
equations or instructions that affect an outcome or result. Most functions can
be shared or called by other functions (like subroutines). Some functions are
executed in order (pre-ordered functions), while others are based on a user
defined event, such as a time interval or transition on a Global Input. Pre-
ordered functions are a special class of functions that execute in a pre-defined
order. They can call other functions, but can not be called by other functions.

Inspector Express includes a library of pre-defined functions for analysis, sys-
tem control and communication. A complete listing of predefined functions
starts on page 20.

3.1 Pre-Ordered Functions

Every solution has 3 pre-ordered functions which execute in the order below:

1. Solution Initialize – called immediately after a solution is loaded. Typically
used to initialize variables to a known state.

2. Pre-Image Processing – called immediately after a new image is received, but
before processing begins. Can be used to handshake with other devices or con-
trol external I/O.

3. Post-Image Processing – Called immediately after processing. Typically used
to formulate results and communicate with external devices.
Inspector Scripting User Manual 12

C
hapter 3

A
bout F

unctions
3.2 Event Functions

Event functions offer design flexibility and control for applications that are
based on asynchronous events, such as state changes in PLC registers or
transition changes on input pins. Event functions do not execute in a
predefined order (except for delay functions), but get called when the defining
event occurs. When using event functions, care should be taken to avoid
unintended conditions associated with asynchronous events.

Click on the button next to the function list to open the “New Func-
tion” setup screen.



 The scripting interface supports 6 types of event functions. Simply define the event
that best suits your application need and click the “Add” button. The new empty
function will then appear in the function list ready for editing.

3.3 Periodic Function

This is a function that is called at a fixed user defined time interval. The
Periodic function is often used to sample external Inputs or PLC registers for
the following:

 Checking for a solution switch action
 Providing a system online heartbeat
 Reset variables or restart inspection in the event of a STOP condition

Note! Accessing PLC registers can be slow (20ms per register is not unrealis-
tic). As a consequence, we recommend defining a periodic interval
greater than 100ms for most applications.
13 Inspector Scripting User Manual

3.4 User Function

The user function is called on demand from other functions, such as the
image pre and post processing functions. User functions perform the following
purpose:

They define application specific processing functions with parameter passing
They provide a means to partition code into smaller, more manageable sub-
routines.

3.5 Delayed Event Function

These functions are called after a special image event occurs:

 New image is received into memory
 Processing of the current image is complete
 On a software trigger

Delayed event functions are typically used to complete I/O events that were
initiated during the image pre and post process functions. These functions are
time synchronized with pre and post image processing functions.

3.6 PLC Change of State Function

These functions are called when a change of PLC register value or state is
detected. A PLC has to be defined for this function to work. This applies only
to Ethernet/IP and Modbus Slave PLCs (not a Modbus Master). These
functions can be used for the following:

 Handshaking and control of 3rd party equipment
 Triggering EagleEye to take a picture under PLC control when the object to be

inspected is in place.

3.7 The Input State Change Function
These functions are called when a selected Input line changes state i.e. from low to
high or high to low. These functions can be used for the following:

 I/O control
 Solution switching
 Triggering using an input line to generate a software trigger

Note! Every user function must include a “return()” statement
Inspector Scripting User Manual 14

C
hapter 3

A
bout F

unctions
3.8 The COM TCP/IP Command Handler Function
 Defines a group of functions or statements that are called to handle a specific com-
mand received on a specific COM Port or TCP/IP Connection.

When the Command Handler Functions are used, the command format used on the
connection must follow the following rules:

All commands are ASCII text (binary data is not allowed).

The Command format is:

command [optional parameters separated by spaces]
(carriage return and /or line feed)

There are 3 special variables which can be used in the command handler function:

argc - the number of command parameters received.

argv - an array of strings which contain the parameters received.

comvar - a special variable which can be passed to the function WriteString to spec-
ify a destination which is the same as the source of the command received.

Note! "\r" = carriage Return character.

"\n" = Line Feed character.

The Command Handler function is added in the "New Function" menu,
and is associated with the specified connection and command. Where
"Variable Name" specifies the connection, and "Command" specifies the
command.
15 Inspector Scripting User Manual

3.9 Function Timing

The above diagram depicts the timing associated with functions. Pre-ordered
functions are synchronized to the start and of end of each inspection. The
special event functions image receive delay and image process delay are
also synchronized. Other functions shown in the blue box may be used to con-
trol asynchronous events.
Inspector Scripting User Manual 16

C
hapter 3

A
bout F

unctions
3.10 Function Listing

3.10.1 Math Functions
 sin(radians) - result is the sine of the argument radians. The argument must be

in radians.
 cos(radians) - result is the cosine of the argument radians. The argument must

be in radians.
 tan(radians) - result is the tangent of the argument radians. The argument must

be in radians.
 asin(x) - result is the arcsine of x in the range -p/2 to p/2 radians, where: -1 <=

x <= 1.
 acos(x) - result is the arccosine of x in the range -p/2 to p/2 radians, where: -1

<= x <= 1.
 atan(x) - result is the arctangent of x in the range -p/2 to p/2 radians.
 atan2(y, x) - result is the arctangent of y/x in the range -p to p radians.
 exp(x) - result is the exponential value of x.
 logn(x) - result is the natural logarithm of x.
 sqrt(x) - result is the square root of x.
 pow(x, y) - result is x raised to the power of y.

3.10.2 String and Character Functions
The following String functions were added to find numeric characters in a string (the
result of a OCR, barcode or 2-D code read), and convert to numbers (for passing to
other equations or peripherals). Other uses are possible.

 Find (substring, inString) - finds the first occurrence of substring in the input
inString, and returns the zero-based index location of the first matching charac-
ter. Returns -1 if no match was found. Spaces are counted.

Example: idx = find(“00”, “SM WRA 0057 4321") returns 7, or sets idx = 7.

 Substring (string, startIndex, length) - forms a sub-string from the input string,
beginning at startIndex (zero-based) of length characters. If length = 0 all char-
acters to the end of the string are included in the sub-string.

Example: s2 = substring(“SM WRA 0057 4321", 9, 0) returns string “57
4321" in s2.

 StrLen (string) - returns the number of characters in a string.
 GetChar (string, index) - returns the character located at index (zero-based) in

the string.
 SetChar (string, index, char) - sets the character in string, located at index

(zero-based), to char.
 int(string) - converts the input string (of numbers) to an integer value.
 Example: x = int("33") sets x = 33
 float(string) - converts the input string (of numbers) to a floating point value.
 Example: x = float("57.499") sets x = 57.499
 char(int) - converts the input integer int to a character.

 string(int) - converts the input number int (base 10) to a string.

Note! Please consult the product user manual for the most up-to-date listing.
17 Inspector Scripting User Manual

3.10.3 Tool Statistics and Attribute Functions
 GetMean(measurementVar) - returns the arithmetic mean for the specified

measurement.
 Example: L1Mean = GetMean (L1)
 GetStdDev(measurementVar) - returns the standard deviation for the specified

measurement.
Example: L1StdDev = GetStdDev (L1)

 GetMin(measurementVar) - returns the minimum value which has occurred for
the specified measurement.

Example: L1Min = GetMin (L1)

 GetMax(measurementVar) - returns the maximum value which has occurred for
the specified measurement.

Example: L1Max = GetMax (L1)

 ResetVarStats(measurementVar) - resets the measurement statistics (min,
max, mean, std dev) for the specified measurement. All prior data samples for
the measurement are cleared out for the statistical calculations.

Example: ResetVarStats (L1)

 GetToolType(measurementVar) - returns a number indicating the type of mea-
surement tool, for the specified variable.

Example: L1type = GetToolType(L1) variable L1type returns the value 6.

 GetNthToolType(varIndex, CamID) - returns a number indicating the type of
measurement tool, for the specified variable index and camera ID. Returns zero
if no tool exists for varIndex and camID (0 for EagleEye)

 varIndex – 0 to (number of tools minus 1) which exist, for the specified camera.
 GetToolName(varIndex, camID) - returns the simple name (no camera prefix)

of the measurement tool, for the specified variable index and camera ID (0 for
EagleEye)

varIndex – 0 to (number of tools minus 1) which exist, for the specified
camera.

 RequestRelearn(measurementVar) - causes measurementVar to be relearned
on the next image.

Example: RequestRelearn(L1)

 SetTolerances(measurementVar, toleranceArrayIn) - sets the 5 tolerance "pivot
points" for the specified measurement variable.

measurementVar – variable name.

toleranceArrayIn – 5 element array of tolerance values. (as shown below,
under GetTolerances).

 GetTolerances(measurementVar, toleranceArrayOut) - gets the 5 tolerance
"pivot points" for the specified measurement variable.

measurementVar – variable name.

toleranceArrayOut – 5 element array of tolerance values:

Index Content

0 Minimum recycle value

1 Minimum pass value

2 Perfect value

3 Maximum pass value

4 Maximum recycle value
Inspector Scripting User Manual 18

C
hapter 3

A
bout F

unctions
 SetNthTolerances(varIndex, camID, toleranceArrayIn) - sets the 5 tolerance
"pivot points" for the specified variable index and camera ID (0 for EagleEye)

varIndex – 0 to (number of tools minus 1) which exist, for the specified
camera.

toleranceArrayIn – 5 element array of tolerance values. (as shown above,
under GetTolerances).

 GetNthTolerances(varIndex, camID, toleranceArrayIn) - gets the 5 tolerance
"pivot points" for the specified variable index and camera ID (0 for EagleEye)

varIndex – 0 to (number of tools minus 1) that exist

toleranceArrayOut – 5 element array of tolerance values. (as shown above,
under GetTolerances).

 GetToolValue(toolName) - returns the measurement value for the tool. The sim-
ple tool name ("L1") is passed.

Example: value = GetToolValue ("L1")

 GetToolResult(toolName) - returns the Result value for the tool. The simple
tool name ("L1) is passed.

Example: value = GetToolResult ("L1")

 GetVarDimension(varName) - returns the number of children variables of the
variable varName.

 WriteVar(narName, value) - write a value to a script variable.
varName - the name of the variable to write to.

value - the value to write to the variable. Example: WriteVar("InputThresh
old", 4.5)

 ReadVar(varName) - Read a script variable's value.
varName - the name of a script variable.

3.10.4 Digital IO/Acquisition Control Function
 pulse(activeVal, offsetMillisec, durationMillisec) - generates a pulse output.

activeVal – 1=active-high pulse, 0=active low-pulse.

offsetMillisec – offset or delay from the moment this statement executes, in
milliseconds.

durationMillisec – duration of the pulse, in milliseconds.

Example: Global.GPO[1] = pulse(1,5,10)

outputs on GPO1 an active-high pulse of 10 ms duration and offset 5 ms
after the statement executes.

 trigger() - generate an image trigger signal. The Sensor Trigger must be set to
"Inspection Trigger" when using this function.

 ReTrigger(camID) - causes re-processing the last image on the indicated
camID.

 camID – always 0 for the EagleEye.

 TriggerSource(source) - set the trigger source or trigger mode.
source – 0=freerun, 1=internal timer, 2=external trigger, 3=software

 SetExposure(exposureTimeMilliseconds) - sets the image exposure time in mil-
liseconds.

Example: SetExposure(9.6) sets the exposure time to 9.6 milliseconds.

 SetBrightness(percentX100) - sets the image brightness. The value is a per-
cent, times 100: a value of 60 is 60%.

 SetContrast(percentX100) - sets the image contrast. The value is a percent,
times 100: a value of 60 is 60%.
19 Inspector Scripting User Manual

 GetExposure() - returns the current value of exposure, in milliseconds.
 GetBrightness() - returns the current value of brightness.
 GetContrast() - returns the current value of contrast.
 SetImageSource(imageSource) - sets the source of images to be processed.

imageSource = 0 - image source is the acquisition device.

1 - image source is the image file store, the subdirectory \Images in Eagle-
Eye.

3.10.5 Logging Functions
 LogStart(fileName, onClient) - Start logging the processed frame data to the

specified CSV (comma separated values) file.
fileName – full path and file name to save CSV data to. For Example,

C:\Logs\iHistlog119200614.csv

onClient – if 0, save to file on server; if 1, save to file on client.

 LogStop() - Stop logging data that was started by a logstart call.
 LogImage(fileName) - saves the image to a file. Only works if image logging is

enabled. Allows you to substitute a different name for one image. The image log
reverts to the name defined in the Communication panel after one image.

fileName – full path and file name to save the image to.

 WriteImageFile(fileName, camID) - To be called only from the "Post Image Pro-
cess" function, will write the current image from the camera specified by camID
to the fileName specified (0 for EagleEye)

fileName – full path of file to save. Can use UNC format: \\server
Name\shareName\path\fileName to save to a server's shared drive. Use

function DriveConnect() to connect to a remote server's share drive.

 WriteImageTools(fileName, camID) - writes an image file including the tool
graphics.

fileName – full path of file to save. Can use UNC format to save to a servers
shared drive: \\serverName\shareName\path\fileName. Use function

DriveConnect() to connect to a remote server's share drive. camID –
always 0 for the EagleEye..

 DriveConnect(Password, UserName, ServerPath) - connect to a remote
server's share. Use in conjunction with WriteImageFile or WriteImageTools to
connect to a remote drive that requires a user name and password login to
access.

Note! DriveConnect should be called before each WriteImageFile or
WriteImageTools call that writes to a remote drive, to ensure the
remote drive stays connected.

Note! The Inspector Express software also supports ftp file logging,
where Inspector Express is the ftp Client logging to an ftp
Server. The ftp File Name syntax is:
ftp://userName:password@host/path

The userName and password are optional in Inspector
Express. These may be required by your ftp server.
Inspector Scripting User Manual 20

C
hapter 3

A
bout F

unctions
 GetFtpFileStatus() - returns the status of a file on the FTP device:

0 = idle.
1 = busy transferring file.
2 = error in ftp connection.

3.10.6 TCP IO Function
 WriteFormatString(commVar, formatString) - Writes a formatted string to the

TCP/IO connection specified by comVar. See also string formatting reference
Example: WriteFormatString(TcpP5025 ,"\n\rLC1 = [LC1]")

Example: WriteFormatString(TcpP5025 , "\n\rLC1 = [LC1%0.3f], L1 =
[L1%d]")

 WriteString(comVar, String) - Writes a string to the TCP/IO connection specified
by comVar. Unlike WriteFormatString, WriteString does not perform embedded
variable evaluations. See string formatting reference for special characters sup-
ported.

Example: WriteString(TcpP5025 ,"\n\rThe measurement is correct")

 WriteBytes(comVar, byteArray, numBytes) - Writes a byte array to the TCP/IP
connection specified by comVar.

 ReadByte(comVar) - Reads the next byte from the TCP/IP connection specified
by comVar if one is available, otherwise returns 0 immediately.

 ReadString(comVar, endingChar) - Reads a string from the TCP/IP connection
specified by comVar if one is available, otherwise returns an empty string imme-
diately.

endingChar – Specifies the char which must have been received to signal
the end of a received string.

 IsConnected(comVar) - Determines the connection state of the TCP/IP connec-
tion specified by comvar. Returns 1 if connected. Returns 0 if disconnected.

3.10.7 Bit Functions
 SetBit(value, bitPosition) - Sets the bit at bitPosition in value. Returns the new

value.
value – a valid number (or variable) to be manipulated on a bit level.

bitPosition – location of the bit to be set.

 ClearBit(value, bitPosition) - Clears the bit at bitPosition in value. Returns the
new value.

value – a valid number (or variable) to be manipulated on a bit level.

bitPosition – location of the bit to be cleared.

 GetBit(value, bitPosition) - tests and returns the state of the bit at bitPosition in
value. Returns the bit state.

value – a valid number (or variable) to be manipulated on a bit level.

bitPosition – location of the bit to be tested.
21 Inspector Scripting User Manual

3.10.8 System / Misc. Functions
 Copy(source, dest, numElements) - Copy numElements from source (an array

of elements) to dest (an array of elements. The copy function can be used to
cause multiple PLC registers to be updated in a single transaction.

 ResetHistory() - clears the history log of stored images and data.
 ResetStatistics() - clears the pass/recycle/reject counters.
 SetDisplayStatus(statusMsg, color) - Sets the message to be displayed in the

Inspection Status box (in the Configuration and Status panel associated with the
Monitor panel). This overrides the display of “Pass” or “Fail”.

statusMsg – the string that will be displayed. For multiple lines, add the
character \n to indicate a new line. Message text is automatically sized to be
 the largest possible yet be contained by the Inspection Status box. String
 formatting information for variables of the form [Var%FormatData] is also
 supported. msg1="[L1%0.2f]" means display the value of L1 with 2 digits
 to the right of the decimal point. See also string formatting reference.

color – The string name of the color the message text is to appear in.
Possible values are: "black”, “red”, “green”, “yellow”, “blue”, “magenta”,
 “cyan”, “white”, “darkred”, “darkgreen”, “darkyellow”, “darkblue”,
“darkmagenta”, “darkcyan”, “lightgray1”, “moneygreen”, “skyblue”, “cream”,
 “lightgray2”, “mediumgray”.

 TimeMillisec() - returns the current time in milliseconds.
 GetTime() - returns a value representing the current date and time. The value

returned equals the number of milliseconds since January 1, 1601 (in the local
time zone). See function FormatTime().

 GetTimeString() - returns a string value representing the current date and time
(local time zone).

Example: now = GetTimeString() sets "now" to a string value "7/9/2009
16:25:28:429"

 FormatTime(timeVal) - converts a time value in milliseconds since January 1,
1601 to a string representing the current date and time.

Example: time1 = GetTime()

 dateString = FormatTime(time1) sets "dateString" to a string value "7/9/2009
15:25:28:429"

 GetVersion() - returns the firmware version of the EagleEye (same as the soft-
ware version of Inspector Express.

 StartInspect() - start image inspection.
 StopInspect() - stop image inspection.
 SwitchingIsEnabled() - Returns 1 if the Solution switching is enabled. Returns

0 if Solution switching is not enabled.
 GetPixel(camID, x, y) - Returns the value for the pixel specified by camID, x,

and y. If the pixel is color, pass the returned value to GetColor to get a specific
primary color value.

camID - always 0 for the EagleEye.
x - the x coordinate. 0 = left most column.
y - the y coordinate. 0 = top row.
Example: centerPix = GetPixel(0, 320, 240)

 GetColor(colorID, pixelValue) - Returns the specified primary color value.

colorID - Specifies primary color desired.
0 – Blue
1 – Green
Inspector Scripting User Manual 22

C
hapter 3

A
bout F

unctions
2 – Red
pixelValue - Value for a color pixel, for example a value returned by
GetPixel.
Example: centerPix = GetPixel(0, 320, 240)
centerRed = GetColor(2, centerPix)

 return(FunctionReturnValue) - Returns the specified value FunctionReturn-
Value from a User defined function.

Example: Return((p1 + p2) /2)
 SetImageEncode(encodeMethod) - Change the image encoding used to com-

press images sent to a connected client.

encodeMethod = 0 – No compression.
1 – JPEG compression (default for color).
2 – Proprietary high speed compression (default for mono).

 AutoSaveEnable(enable) - Turn solution auto-save on or off. If auto-save is
on, when a user exits the top level (main) setup panel, the solution is automati-
cally re-saved, and solution switching is automatically re-enabled.

enable = 0 – turn off auto-save.
1 – turn on auto-save.
23 Inspector Scripting User Manual

Inspector Scripting User Manual 24

Chapter 4

4 The String Editor

The string editor simplifies construction of output strings. The GUI is accessed
through the “Free Edit” script tool and allows users to define strings without writing
code. Each string is composed of user text, formatted program variables and delimit-
ing characters. Strings can be written to the function being edited and attached
directly to a predefined communication port:

Strings are constructed by entering text or dragging variables into the string
command line. The above example generates the following lines of code in
the function being edited (typically the Post Image Process function):
str1 = "OCR_String=[OCR%s][OCR1%s][OCR2%s][OCR3%s][13][10]"

WriteFormatString(TcpP5024, str1)

4.1 String Formatting Reference
 Special Characters used in strings

\n - Line feed
\r - Carriage return
\t - Horizontal tab
\f - Form feed
\v - Vertical tab
\xhh - specify a hex byte, for example \xa6 Use the byte value a6.
Other control or non-printing characters can be formed using the \x with
the hex value for the ascii character. For example \x04 for EOT, \x07 for
Bell, \x00 for Null.

 Formatting Variables used in the WriteFormatString function

The general form follows this pattern. Please note items inside braces { }
Inspector Scripting User Manual 26

C
hapter 4

T
he S

tring
E

ditor
are optional.
[VariableName %{width} {.precision} type] Example: [LC1 %4.3f]

The optional fields, which appear before the type character, control other
aspects of the formatting, as described below.

 Type

A required character that determines whether the associated argument is
interpreted as a character, a string, or a number. Supported character
types:

c specifies a single-byte character.
d Signed decimal integer.
i Signed decimal integer
u Unsigned decimal integer.
x Unsigned hexadecimal integer, using "abcdef".
X unsigned hexadecimal integer, using "ABCDEF".
e Signed value having the form [–]d.dddd e [sign]dd[d[where d is a single
decimal digit, dddd is one or more decimal digits, dd[d] is two or three
decimal digits depending on the output format and size of the exponent,
and sign is + or -.
f Signed value having the form [–]dddd.dddd, where dddd is one or more
decimal digits. The number of digits before the decimal point depends on
the magnitude of the number, and the number of digits after the decimal
point depends on the precision.
g Signed value printed in f or e format, whichever is more compact for the
given value and precision. The e format is used only when the exponent of
the value is less than -4 or greater than or equal to the precision argument.
Trailing zeros are truncated, and the decimal point appears only if one or
more digits follow it.
G Identical to the g format, except that E, rather than e introduces the
exponent (where appropriate).
s specifies a single-byte character string. Characters are printed up to the
first null character or until the precision value is reached.

 width

Optional number that specifies the minimum number of characters output.
The width argument is a nonnegative decimal integer controlling the
minimum number of characters printed. If the number of characters in the
output value is less than the specified width, blanks are added to the left
until the minimum width is reached. If width is prefixed with 0, zeros are
added until the minimum width is reached.

 precision

Optional number that specifies the maximum number of characters printed
for all or part of the output field, or the minimum number of digits printed for
integer values.
27 Inspector Scripting User Manual

For types: d, i, u, o, x, X
The precision specifies the minimum number of digits to be printed. If the
number of digits in the argument is less than precision, the output value is
padded on the left with zeros. The value is not truncated when the number
of digits exceeds precision.
The default precision is 1.

 For types: e, E

The precision specifies the number of digits to be printed after the decimal
point. The last printed digit is rounded.
The default precision is 6. If precision is 0 or the period (.) appears without
a number following it, no decimal point is printed.

 For types: f

The precision value specifies the number of digits after the decimal
point. If a decimal point appears, at least one digit appears before it. The
value is rounded to the appropriate number of digits.
Inspector Scripting User Manual 28

Appendix A

A Scripting Examples

The following examples demonstrate usages of the script tool. Each example
has a brief description of the application and associated code snippets from
the relevant functions. These examples cover basic scripting concepts only
that apply to typical applications.

A.1 Manipulating Outposts
Many applications require some sort of output manipulation. By default EagleEye
outputs are set to the “soft pulse” setting which automatically generates output pulses
on GPO[0] and GPO[1] for pass and fail results. Below we’ll show at how to generate
pulses or levels using the script tool.

Predefined Function used:

pulse(activeVal, offsetMillisec, durationMillisec) - generates a pulse output.

activeVal – 1=active-high pulse, 0=active low-pulse.

offsetMillisec – offset or delay from the moment this statement executes, in millisec-
onds.

durationMillisec – duration of the pulse, in milliseconds.

In the Post Image Processing function:

// Set the pass/fail condition

If (Result=1) // If composite Pass condition

Global.GPO[0] = pulse(1,0,20) // generate a 20 ms pulse on output 0

Else // Else fail

Global.GPO[1] = pulse(1,0,20)// generate a 20 ms pulse on output 1

Endif() // Close condition statement

Similar equation statements can be used to indicate that a specific measurement
caused a failure. There are many different ways to formulate a statement. You can
use the first field as part of the statement, enter a 1 (always true) or leave the field
blank.

If (MS1.Result = 3) Global.GPO(1) = pulse(1,0,400)

The above equation outputs a 400 ms active high pulse on GPO(1) (no delay) if the
MS1 match tool fails (Result=3). The equation below generates the same pulse if the
MS1 match tool is not a pass (Result = 2 or 3)

If (MS1.Result != 1) Global.GPO(1) = (pulse(1,0,400)

MS1 is the measured value of the match. You can use the measured value in state-
ments, in place of the result of a measurement as shown below. Output a 50 ms
active high pulse on GPO(1) (5 ms delay) if the MS1 match score is less than 90

If (MS1 < 90) Global.GPO(1) = pulse(1,5,50)

Similarly, if the Distance measurement L1 is less than 400, output a 50 ms active high
pulse on GPO(1) (5 ms delay).
Inspector Scripting User Manual 30

A
ppendix A

S
cripting

E
xam

ples
If (L1 < 400) Global.GPO(1) = pulse(1,5,50)

Below is an example of using the “always true” condition. Set the GPO(1) to logic 1 if
MS1 match tool does not pass; set GPO1 to logic 0 if MS1 match tool passes

If(1) Global.GPO(1) = (MS1.Result != 1)

Replacing “If(1)” with "If ()" produces the same result.

A.2 Solution Switching
There are different scripting methods available for solution switching. We’ll describe
two popular scenarios that use external inputs and Variables. In the case of inputs
the scripts can be expanded with the number of inputs (i.e. using the PL-200 will give
you 8 inputs to support up to 256 solutions). Both cases use a periodic function:

 Predefined variable used:

 Solution - Global command variable that loads a new solution when written

Add a periodic function (typically 100ms) to solution 1 with the following:

// GPI[1] - defines solution 0 (LOW) or solution 1 (HIGH)

If (GPI[1]=0) // Check for solution #

Solution = 0 // switch to solution 0

Endif // Close condition statement

Add a periodic function (typically 100ms) to solution 0 with the following:

// GPI[1] - defines solution 0 (LOW) or solution 1 (HIGH)

If (GPI[1]=1) // Check for solution #

Solution = 1 // switch to solution 1

Endif // Close condition statement
If you use a variable to define the solution # instead of an input, then the script must
be modified to reflect the variable value. EagleEye supports variable access through

integrated network commands (inside a 3rd party program) or through PLC control. In
the latter case a PLC connection has to be established and a register or tag is
assigned as the solution ID variable.

Note! If you set an output to a level, it will stay that way until you change
it. For example you could set an output to “1” as above and then
reset it to “0” before processing the next image using the “Image
Pre Process Function”.
31 Inspector Scripting User Manual

As an example, let’s assume EagleEye is connected to a Rockwell ControLogix PLC
with a user defined tag called “EagleEye_SOLUTION”. We need to setup a periodic
script to monitor the tag for a solution change.

Init variable in the solution initialize function:

CIx10.EagleEye_SOLUTION = solution //Add for each solution

Set up periodic function to monitor tag:

Solution = CIx10.EagleEye_SOLUTION// switch to solution if ID
is different

Note! Since this is a variable, it is always recommended to initialize it at solu-
tion load time. This will prevent immediately switching to an unexpected
solution upon entry if the variable is in an unknown state.
Inspector Scripting User Manual 32

A
ppendix A

S
cripting

E
xam

ples
A.3 Trigger Control
Inspector Express supports 3 modes of triggering, internal timer, external input and
software controlled. Most applications use external input or software controlled. Inter-
nal or external triggering selected using the Inspector Express GUI in the sensor
setup panel. Software trigger is controlled via scripting or via network commands.

This simple example shows how to software trigger inspections using scripting.

Predefined functions:

trigger() - generate an image trigger signal. The Sensor Trigger must be set to
"Inspection Trigger" when using this function.

TriggerSource(source) - set the trigger source or trigger mode.

source – 0=freerun, 1=internal timer, 2=external trigger, 3=software

In Solution Initialize function:

TriggerSource = 3// Set to software trigger mode on
solution load
Trigger_Enable = 1// Trigger qualifier for handshake (arm ini-
tially)

In user defined Periodic Function:

Trigger_Start = MBSlaveHrs16[2]// Read Modbus defined trigger
register

If(Trigger_Start=1 AND Trigger_Enable = 1)// Check trigger
condition

Trigger() // Software trigger

Trigger_Enable = 0// Turn off Trigger gate

Endif

If(Trigger_Start=0)// Wait until PLC changes Trigger state

Trigger_Enable = 1// Re-arm trigger

Endif

Note! In general, software triggers are held off during an active acquisi-
tion cycle.
33 Inspector Scripting User Manual

A.4 ReTrigger Example
A special case of triggering uses the “retrigger” function. This function re-triggers the
last acquired image for processing, rather than triggering a new image. The function
is useful in an application where you first need to identify which part is passing the
camera before processing it. In this case, the external trigger captures the image for
identification and the retrigger function reloads the same image after the relevant
inspection solution is loaded.

Predefined functions:

ReTrigger(camID) - causes re-processing the last image on the indicated camID.

camID – always 0 for the EagleEye.

In Solution Initialize function:

ReTrigger(0)// Retrigger previous image for inspection

In Solution Initialize function:

NewSolution = 2// Set counter to 2

In 40ms user defined Periodic Function:

If(NewSolution=0)// When count = 0

ReTrigger(0) // Force retrigger

Endif

NewSolution = NewSolution -1// Decrement count

Note! If a client is connected, the GUI may not update correctly follow-
ing a retrigger after load. In such cases it is good to add a small
delay inside a periodic function (using the count variable defined
below)
Inspector Scripting User Manual 34

A
ppendix A

S
cripting

E
xam

ples
The font size in the text window is not user selectable, but rather scales according to
how much text is being displayed. The font type is also not selectable.

If you wish to display multiple lines of text, you need to construct strings accordingly
inside a single function call. If you define multiple SetDisplayStatus() functions in your
script, only the text from the last function will be displayed i.e. each will overwrite the
previous.

An example of how to define multiple lines of text in the “Post Image Process” func-
tion is as follows:

Str1 = “Count Result = “// define count string

Str2 = “\n Inspection Passed”// define pass message

Str3 = “\n Pass Count =“// define pass count string

Str4 = “\n Inspection Failed” // define fail message

Str5 = “\n Fail Count =“// define fail count string

if(Result=1)

 SetDisplayStatus(Str1+N.Result+Str2+Str3+Global.PassCount,
"darkgreen")

Else

 SetDisplayStatus(Str1+N.Result+Str4+Str5+Global.FailCount,
"darkred")

Endif

A pass result would produce the following text on the monitor screen:
35 Inspector Scripting User Manual

A.5 Customizing Text is the Monitor Pane
Inspector Express offers little in the way of runtime customization, but through script-
ing it is possible to display results or messages in the “Display Status” window on the
Monitor panel.

Predefined functions:

SetDisplayStatus (statusMsg, color) - Sets the message to be displayed in the
Inspection Status box (in the Configuration and Status panel associated with the
Monitor panel). This overrides the display of "Pass" or "Fail".

statusMsg – the string that will be displayed. For multiple lines, add the char-
acter \n to indicate a new line. Message text is automatically sized to be the largest
possible that can be contained in the Inspection Status box. String formatting infor-
mation for variables of the form [Var%FormatData] is also supported:
msg1=”[L1%0.2f]” means display the value of L1 with 2 digits to the right of the dec-
imal point.

color – The string name of the color the message text is to appear in. Possi-
ble values are: "black”, “red”, “green”, “yellow”, “blue”, “magenta”, “cyan”, “white”,
“darkred”, “darkgreen”, “darkyellow”, “darkblue”, “darkmagenta”, “darkcyan”,
“lightgray1”, “moneygreen”, “skyblue”, “cream”, “lightgray2”, “mediumgray”.

The following script commands will display the messages ‘2D Code read” for pass
inspections and “Failed to Read” for fail inspections (screen shots shown on the fol-
lowing page):

If(Result=1)

SetDisplayStatus(“2D Code Read”, “green”) // post pass message

Else

SetDisplayStatus(“Failed to Read”, ”red”) // post fail message

Endif
Inspector Scripting User Manual 36

A
ppendix A

S
cripting

E
xam

ples
The font size in the text window is not user selectable, but rather scales
according to how much text is being displayed. The font type is also not
selectable.

If you wish to display multiple lines of text, you need to construct strings
accordingly inside a single function call. If you define multiple
SetDisplayStatus() functions in your script, only the text from the last function
will be displayed i.e. each will overwrite the previous.

An example of how to define multiple lines of text in the “Post Image Process”
function is as follows:

Str1 = “Count Result = “// define count string
Str2 = “\n Inspection Passed”// define pass message
Str3 = “\n Pass Count =“// define pass count string
Str4 = “\n Inspection Failed” // define fail message
Str5 = “\n Fail Count =“// define fail count string

if(Result=1)

SetDisplayStatus(Str1+N.Result+Str2+Str3+Global.PassCount
, "darkgreen")
Else

SetDisplayStatus(Str1+N.Result+Str4+Str5+Global.FailCount
, "darkred")
Endif

A pass result would produce the following text on the monitor screen:
37 Inspector Scripting User Manual

A.6 Sensor Control
Scripts can be used to dynamically monitor and adjust sensor parameters to com-
pensate for lighting variation. This is not a common concern since most applications
use controlled lighting, but it can be useful in situations where process changes affect
part intensity.

Predefined functions:

SetExposure(exposureTimeMilliseconds) - sets the image exposure time in millisec-
onds.

Example: SetExposure(9.6) sets the exposure time to 9.6 milliseconds.

GetExposure() - returns the current value of exposure, in milliseconds.

SetDisplayStatus(statusMsg, color)

This inspection adjusts the camera exposure (shutter) to a lighting brightness range
and writes a message below the image. In this example we want to keep the area
average between 198 and 202.

Script in the Post Image Process function:

If(InspectAreaAve<198 OR InspectAreaAve>202)// Check condition

 AdjustShutter()// Adjust Shutter to compensate

Else

 SetDisplayStatus(“Inspecting”,”green”)// Write to display

Endif

Script in the User Function “AdjustShutter”:

// This script gets called when the inspection intensity
checks go above or below
// user defined limits

If(InspectAreaAve>210) // Check upper limit
ShutterAdjust = -0.5 // Lower shutter value

Endif
If(InspectAreaAve<=210 AND InspectAreaAve>202)// Check
mid upper limit

ShutterAdjust= -0.1 // Lower shutter value
Endif
Inspector Scripting User Manual 38

A
ppendix A

S
cripting

E
xam

ples
If(InspectAreaAve<190) // Check low limit
ShutterAdjust= 0.5 // increase shutter value

Endif
If(InspectAreaAve>=190 AND InspectAreaAve<198)// Check
mid lower limit

ShutterAdjust= 0.1 // increase shutter value
Endif
CurrentShutter=GetExposure()// Get current exposure value
NewShutter=CurrentShutter+ShutterAdjust// Compensate
If(NewShutter>=0.1 AND NewShutter<=100)// Verify within
exposure limits

SetExposure(NewShutter)// Set new exposure
SetDisplayStatus(“Adjusting Shutter”,”yellow”)//

Inform operator
Else

SetDisplayStatus(“Shutter Out of Range, Check
Light”,”red”) // Inform operator
Endif
Return()

A.7 Image Logging

There are different ways to write images. This example shows how to log
images to a remote drive.
 Predefined function used:

DriveConnect(Password, UserName, ServerPath) - connect to a remote
server's share. Use in conjunction with WriteImageFile or
WriteImageTools to connect to a remote drive that requires a user name
and password login to access. NOTE:

DriveConnect should be called before each WriteImageFile or
WriteImageTools call that writes to a remote drive, to ensure the remote
drive stays connected.

The ftp File Name syntax is:

ftp://userName:password@host/path
The userName and password are optional in Inspector Express. These

may be required by your ftp server.

// log pass images to network drive
If(Result = 1)
 // Connect to drive

DriveConnect("password", "administrator",

Note! The Inspector Express software also supports ftp file logging,
where Inspector Express is the ftp Client logging to an ftp Server.
39 Inspector Scripting User Manual

"\\MyDrive\D")
// Construct file name – you can construct a string

name composed of different
// variables using the “+” operator

 fn = "\\MyDrive\D\PassImages\" + “Job_" + “123_" +
“Image_“+”Num”+“.bmp”

// Write image to selected drive with defined file
name

WriteImageFile(fn, 0)
Endif

The above equations produce a file name of: Job_123_Image_Num.bmp

A.8 Result Logging
This example shows how to log results to a CSV file on the client hard drive. The “cli-
ent” is a PC connected to a EagleEye camera. Note: Client and Server are one of the
same for the EagleEye emulator

To demonstrate both the “logstart” and “logstop” functions, we’ll design a small pro-
gram that stops logging after 20 failures. To do this we’ll need a count variable to
keep track of failures and we’ll need to initialize this variable when the solution first
loads.

:

 Predefined variable used:

LogStart(fileName, onClient) - Start logging the processed frame data to the speci-
fied CSV (comma separated values) file.

fileName – full path and file name to save CSV data to. For Example,
C:\Logs\iHistlog119200614.csv

onClient – if 0, save to file on server; if 1, save to file on client.

LogStop() - Stop logging data that was started by a logstart call.

In the “Solution Initialize” function: In the “Post Image Process” function:

// Init fail_count variable

Fail_count = 0

// Start the CSV file logging function

LogStart(“d:\DALSA\failog.csv,0”)

// Check fail_count value

If (fail_count = 20)

LogStop()//stop logging

Else

If (Result.0=3)//check for fail

fail_count=fail_count+1 //
increment

Endif

Endif
Inspector Scripting User Manual 40

Ian.Shen
註解
LogStart("d:\Advantech\failog.csv",1)

A
ppendix A

S
cripting

E
xam

ples
Screenshot of the CSV log file that this example gen-

erates. Note that all results are logged until the 21st

failure is detected.

Below shows how to change the “Post Image Pro-
cess” script to log ONLY the failed results:

// Check for Fail_count limit

If (Fail_count < 20)

If (Result.0=3)

LogStart(“d:\DALSA\failog.csv,0”)

fail_count=fail_count+1

Endif

Else

LogStop()//stop logging

Endif
41 Inspector Scripting User Manual

A.9 Using Start and Stop Functions
These functions can be used to control the running state of EagleEye. Whilst in the
STOP state, EagleEye is effectively in bypass mode, meaning it will not respond to
triggers and it will not execute the preordered functions. However, it will continue to
execute event functions if defined.

This example shows how to stop Inspector Express (and restart) if a failed condition
is detected n number of times. In this case, the failed condition is an incorrect number
of characters read by the OCR tool. The “Post Image Process” function will be used
to test the OCR string and stop inspect when the count reaches 50. We’ll also check
the code against a preloaded value (stored in a variable) and set an output state to
indicate “good” or “bad” code. We’ll setup a periodic function to detect if Inspector
Express has stopped and if so restart it. This same function will be used to reset the
failure count variable.

 Predefined function used:

StartInspect() - start image inspection.
StopInspect() - stop image inspection.

In the “post Image Process” function:
// Store the number of characters from the OCR string in
variable “slength”
// Count number of times the expected length does not match and
STOP if 50
slength=StrLen(OCR1)
If (slength<8) //check for wrong number of characters

fcount=fcount+1//increment bad counter
If (fcount=50)//check for stop condition

StopInspect()
Endif

Endif

Also in the “post Image Process” function, we’ll manipulate an output based on the
read result being correct or not:

// Check value of OCR1 against predefined code and action
output
If (codecheck=OCR1)//codecheck is a preloaded user variable

Global.GPO[0]=1//output code good
Else

Global.GPO[1]=1//output code bad
Endif

The outputs can also be pulsed as shown earlier or terminated in length using the
“Image Process Delay function”. Another option would be to hold the current output
state until the next inspection starts (i.e. reset them in the “Image Receive Delay

Note! You must save the solution before the Stopinspect () function will work
Inspector Scripting User Manual 42

A
ppendix A

S
cripting

E
xam

ples
Function”).
Now we’ll define a simple periodic function to restart Inspector Express based on
notification from a PLC:

// If Inspector Express has stopped, reset fail feature count
and restart when directed

PLC_Runmode=EIPint[0]//Ethernet/IP register 0
If (PLC_Runmode = 1)

StartInspect()
fcount=0

Endif

A.10 Communication Using Strings

This script demonstrates how to read a string from an attached Ethernet port.
In this case, the string contains command characters for solution control and
triggering. The script parses the string to extract the control characters for
action. We’ll define the string to be 10 characters (+ delimiter character) as
follows:

Char 0 = command character – “T” = Trigger, “S” = Stop, “R” = Restart
Char 1 = Solution # - 0 through 9
Char 2-9 = Job code

This script should be added to a periodic function for the following reasons:
Communication is asynchronous to processing
Periodic functions continue to run when the system is in a “stopped” state,

enabling the user to issue a “restart” command.

Predefined functions used in this example:
ReadString(comVar, endingChar) - Reads a string from the TCP/IP

connection specified by comVar if one is available, otherwise returns an
empty string immediately.

Substring(string, startIndex, length) - forms a sub-string from the input string,
beginning at startIndex (zero-based) of length characters. If length = 0 all
characters to the end of the string are included in the sub-string.

trigger() - generate an image software trigger signal. The Sensor Trigger
must be set to "Inspection Trigger" when using this function.

StartInspect() - start image inspection.
StopInspect() - stop image inspection. Stops the camera from processing
and outputting. For example, something has gone wrong on the line and con-
trolling equipment needs to be stopped.
43 Inspector Scripting User Manual

The Periodic function:

ReadBuffer = ReadString(TcpP6001 , 13)// load string until
“CR” line delimiter detected
if(ReadBuffer != "") // if buffer is not empty
CommandString = ReadBuffer// store string in string variable
CommandCharacter = Substring(CommandString, 0, 1) //extract
command character
SolutionNumber = Substring(CommandString, 1, 1) // extract
solution number
 JobCode = Substring(CommandString, 2, 9) // extract job
code
if(INT(SolutionNumber) >0 AND INT(SolutionNumber)<9) //
validate solution #
 SolutionNumber = INT(SolutionNumber)// convert from
string to INT

SOLUTION = SolutionNumber// change to specified solution
 endif

//Note: if SolutionNumber is different than current solution
running, change will start //immediately and the following code
will be ignored. If they are the same, the following code //
will be executed
 if(CommandCharacter = "T") // look for trigger command
 trigger() // call trigger function
 endif
 if(CommandCharacter = “S") // look for trigger command
 stopinspect()// call stop function
 endif
 if(CommandCharacter = “R") // look for trigger command
 startinspect()// call restart function
 endif
Endif // close main IF statement
Inspector Scripting User Manual 44

A
ppendix A

S
cripting

E
xam

ples
A.11 Using Arrays
The script tool supports the use of arrays (consecutive data registers). Arrays can be
used to segment or organize data into a user defined structure. Some complex tools
output results into arrays for script manipulation, but most users define arrays for
more efficient communication.

Array Example 1:

This simple example shows how to parse an array of blob areas (Area.[x]) from the
count tool to find the biggest blob (Note: in practice this can easily be done using the
“max” feature of the count tool without writing any script):

In Post Image Process Function:

array_count=0// reset array_count variable

max_value=0 // reset max_value variable

while(array_count<20)// Do while array_count <20

 array_value = Area.[array_count]// Read entry in array

 if(array_value>max_value)// Check for high value

 max_value = array_value// Make new highest value

 endif

 array_count=array_count+1// Increment counter

endwhile

Array Example 2:

This similar example shows how to parse an array of numbers to find two consecu-
tive entries that differ by more than 20%:

Input Array (entries 3 and 4 differ by 25%): ds[0:5]=90, 90, 90, 100, 80, 90

Post Image Process Function:

//

numHi = 0

i = 0

while(i < 6)

 z = i+1

 while(z < 6)

 if(ds[i] < ds[z])

 ratio = ds[z] / ds[i]

 else

 ratio = ds[i] / ds[z]

 endif

 if(ratio > 1.20)

 highRatio[numHi] = ratio// store high ratio

 highRatio[numHi][0] = I// store first number

 highRatio[numHi][1] = z// store second number

 numHi = numHi+1

 endif

 z = z+1

 endwhile

 i = i+1

endwhile
45 Inspector Scripting User Manual

Array Example 3:
This example shows how to match a barcode string to a predefined string stored in
an array. The 32 string array is indexed based on a user code supplied through the
Global Inputs (PL-200) i.e. if input = 0x4, compare the barcode value with string #4.

Place the 32 strings in array called “BarCodeList”

BarCodeList[0] = “M54321”

BarCodeList[1] = “JJ H4321”

…

BarCodeList[31] = “KLM6721”

Post Image Process Function:

idx = 0

i = 0

while(i < 5) // Find array entry to compare

 idx = idx | (Global.GPI[i] << i)// Based on 5 GP inputs

 i = i+1

endwhile

BarMatch = BarCodeList[idx]// Compare string
Inspector Scripting User Manual 46

A
ppendix A

S
cripting

E
xam

ples
Using arrays for communication:

Arrays offer convenience and efficiency when communicating between EagleEye and

3rd party equipment. You can define a common data structure that can be moved
quickly between devices using a single command.

WriteBytes(comVar, byteArray, numBytes) - Writes a byte array to the TCP/IP con-
nection specified by comVar

copy(source, dest, numElements) - Copy numElements from source (an array of ele-
ments) to dest (an array of elements). The copy function can be used to cause multi-
ple PLC registers to be updated in a single transaction

Example:

This example shows how to send the X, Y and Z coordinates to a robot in one Mod-
bus multiple register transaction. With variable MB92HRs16 attached to a Modbus
holding register, the following will update the Modbus device coordinates in a single
transaction.

cmd[0] = x // X coordinate

cmd[1] = y // Y coordinate

cmd[2] = z // Z coordinate

copy (cmd, MB92HRs16, 3)// Send coordinates

Similarly, you can store results from multiple tools in a single array and transfer them
efficiently using the WriteBytes function:

meas[0]= L1 // Array element 0

meas[1]= L2 // Array element 1

Meas[2]= N1 // Array element 2

…

Meas[9]= IntAverag1// Array element 9

WriteBytes(TcpP5025 , meas, 10)// Send 10 elements
47 Inspector Scripting User Manual

A.12 Manipulating Bits of Data
This example shows how to use the Bit Function and TCP/IP communication. A byte
number is sent to EagleEye which has to be converted to a binary number. The
binary number defines which inspection results are to be sent over TCP/IP for dis-
play.

Predefined functions Used:

GetBit(value, bitPosition) - tests and returns the state of the bit at bitPosition in value.
Returns the bit state.

value – a valid number (or variable) to be manipulated on a bit level.

bitPosition – location of the bit to be tested.

Script in the Pre-Image Process Function:

// Initialize data bit variable

Bit0 = 0

Bit1 = 0

Bit2 = 0

Bit3 = 0

Script in Post Image Process Function:

MyData = ReadByte(TcpP5025)// Read byte from TCP port

If(MyData != “”)

Bit0= GetBit(MyData,0)// get bits from MyData byte

Bit1= GetBit(MyData,1)

Bit2= GetBit(MyData,2)

Bit3= GetBit(MyData,3)

SetDisplayStatus(“Data Received”, “green”)// send message to monitor

SendCountData() // call User function

Else

SetDisplayStatus(“No Data”, “red”)// send message to monitor

Endif
Inspector Scripting User Manual 48

A
ppendix A

S
cripting

E
xam

ples
Script in User Function SendCountData// User defined function

WriteFormatString(TcpP5025,”\n\r New Count Data”)// Send start
of string

If(Bit0 = 1)

WriteFormatString(TcpP5025,”\n\r Left Side Found =
[Left_Side]”) // send left count

Endif

If(Bit1 = 1)

WriteFormatString(TcpP5025,”\n\r Right Side Found =
[Right_Side]”) // send right count

Endif

If(Bit2 = 1)

WriteFormatString(TcpP5025,”\n\r Top Side Found = [Top_Side]”)
// send top count

Endif

If(Bit3 = 1)

WriteFormatString(TcpP5025,”\n\r Bottom Side Found =
[Bot_Side]”) // send bot count

Endif

Return()// Return to main program

Example of String produced when Bit0=1:

New Count Data

Left Side Found = 38
49 Inspector Scripting User Manual

www.advantech.com
Please verify specifications before quoting. This guide is intended for reference
purposes only.
All product specifications are subject to change without notice.
No part of this publication may be reproduced in any form or by any means,
electronic, photocopying, recording or otherwise, without prior written permis-
sion of the publisher.
All brand and product names are trademarks or registered trademarks of their
respective companies.
© Advantech Co., Ltd. 2013

	Inspector Express
	1 The Script Panel
	1.1 Accessing the Script Tool
	1.2 The variable Tree List
	1.3 The Function List
	1.4 The Basic Script Editor
	1.5 The Full Script Editor
	1.6 Scripting Basics

	2 About Variables
	2.1 Special Global Variables
	2.2 Persistent Variables
	2.3 Variable Basics
	2.4 Variable Listing

	3 About Functions
	3.1 Pre-Ordered Functions
	3.2 Event Functions
	3.3 Periodic Function
	3.4 User Function
	3.5 Delayed Event Function
	3.6 PLC Change of State Function
	3.7 The Input State Change Function
	3.8 The COM TCP/IP Command Handler Function
	3.9 Function Timing
	3.10 Function Listing
	3.10.1 Math Functions
	3.10.2 String and Character Functions
	3.10.3 Tool Statistics and Attribute Functions
	3.10.4 Digital IO/Acquisition Control Function
	3.10.5 Logging Functions
	3.10.6 TCP IO Function
	3.10.7 Bit Functions
	3.10.8 System / Misc. Functions

	4 The String Editor
	4.1 String Formatting Reference

	A Scripting Examples
	A.1 Manipulating Outposts
	A.2 Solution Switching
	A.3 Trigger Control
	A.4 ReTrigger Example
	A.5 Customizing Text is the Monitor Pane
	A.6 Sensor Control
	A.7 Image Logging
	A.8 Result Logging
	A.9 Using Start and Stop Functions
	A.10 Communication Using Strings
	A.11 Using Arrays
	A.12 Manipulating Bits of Data

